

Educator Training – Day 1 Welcome!

Agenda

- » Welcome
- » ZR Background/Intro
- » The SPHERES
- » Math Terms
- » ZR IDE, Part 1
- » Lunch/Snack Break
- » Q and A
- » Intro to the 2015 Game
- » ZR IDE, Part 2
- » Explore Teacher Guide

WHO'S IN THE ROOM???

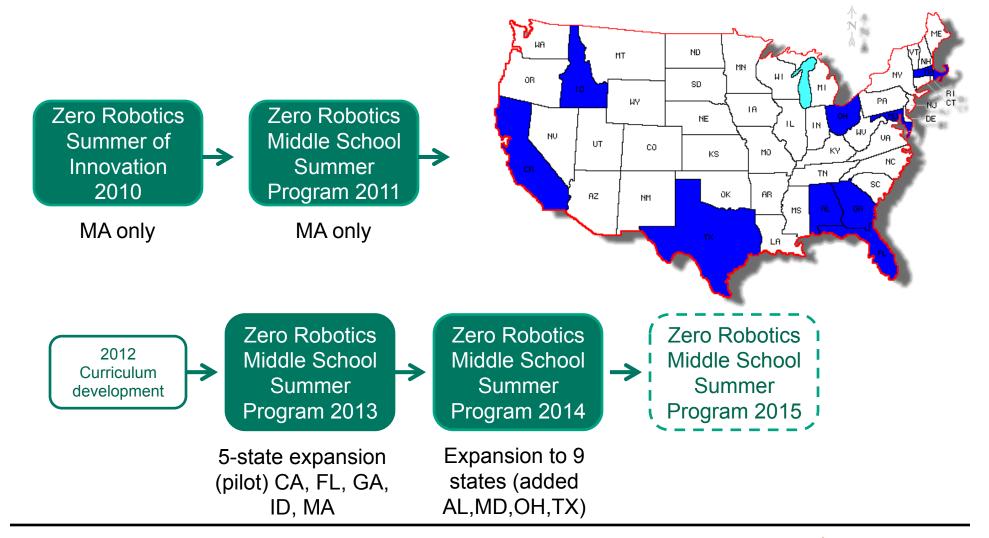
OUR MANTRA FOR STEM EDUCATORS

OUR MANTRA FOR STEM EDUCATORS

"I don't know, but we'll find out!"

This training is supported in part by:

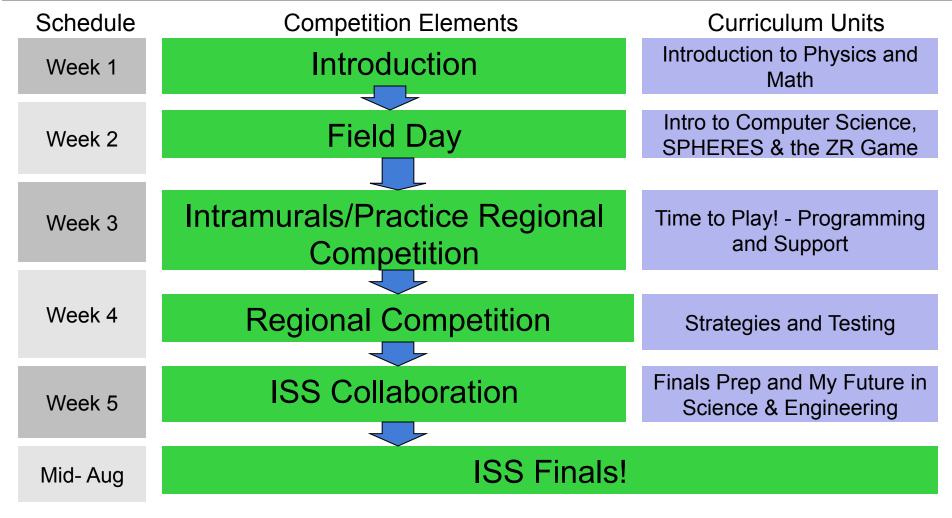
Linde Family Foundation



History of the Zero Robotics Middle School Program

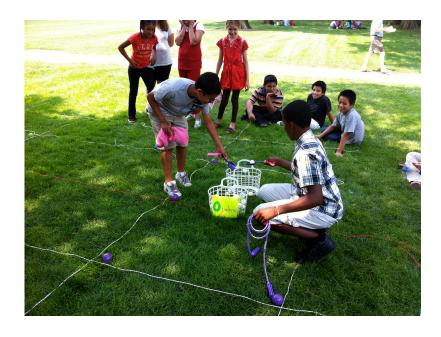
Program Overview

- Supports a variety of programming schedules
- Mixture of math and science instruction, coding, problem-solving, games, and youth development activities
- 15 hours per week (75 hours total)
 - 5 days per week with 3 hours ZR per day - OR -
 - 3 days per week with 5 hours ZR per day - OR -
 - 4 days per week is also successful since it avoids problems with student absences on Fridays



MS Program Structure

Note: Due to ISS availability, the ISS Finals date is not fixed until ~3 weeks before event.



Middle School Program Schedule

- May: Educator training part 1
- June: Educator training part 2 (3 hour webinar)
- July 6 August 7: 5 week summer program
- August: One day event: ISS Finals, live from ISS

Synchronized Position

*H*old

Engage

Reorient

Experimental

Satellites

- SPHERES are the size of a bowling ball
- The SPHERES first reached the ISS in 2006
- There are currently three SPHERES aboard the ISS
- Each satellite is self-contained with power, propulsion, computers and navigation equipment
- The three satellites float freely in the ISS and perform flight formations

SPHERES GLOBAL COORDINATES ACTIVITY

Math or Code?

VOCABULARY

Variables

Integers

Floats

Arrays

Coordinates

Vectors

VARIABLES

Math: an alphabetic character representing a number

$$2 + x = 5$$
: $x = 3$

ZR and coding: A "container" for single piece of data. The computer must be told what type of information will be going in the container.

We know from math that **integers** are **WHOLE NUMBERS**:

We know from math that **integers** are **WHOLE NUMBERS**: 1, 73, -5

We know from math that **integers** are **WHOLE NUMBERS**:

1, 73, -5

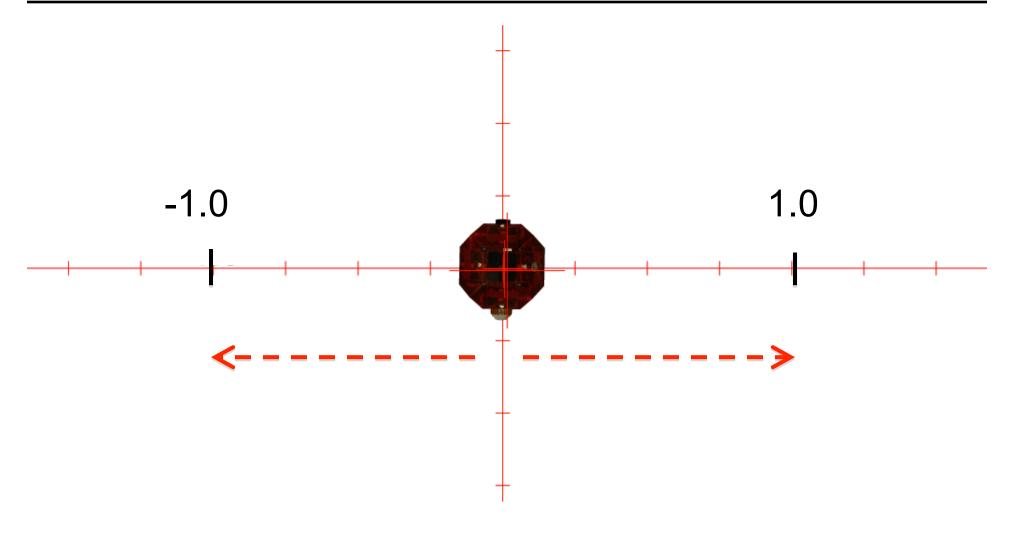
In coding, FLOATS represent decimals:

We know from math that **integers** are **WHOLE NUMBERS**:

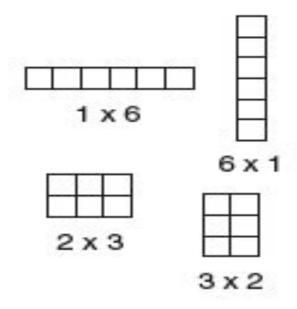
1, 73, -5

In coding, FLOATS represent decimals:

1.3, 73.2, -5.98



Active Region of Number Line

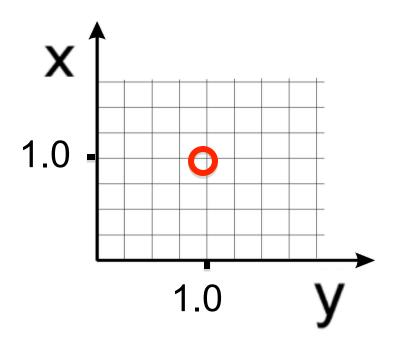


ARRAYS

Math: an arrangement of a set of numbers or objects in rows or columns

ARRAYS

ZR and coding: a data type that stores multiple pieces of data in one place...essentially a list of data types



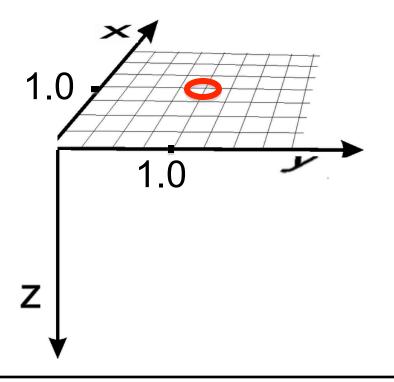
COORDINATES -2D

$$\{x, y\}$$

$$x = 1.0$$

$$y = 1.0$$

 $\{1.0, 1.0\}$

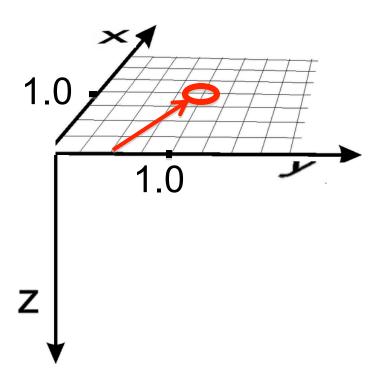


COORDINATES -3D

 $\{x, y, z\}$

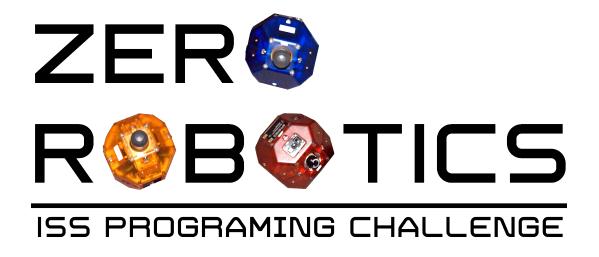
 $\{1.0, 1.0, 0.0\}$

$$z = 0$$



VECTORS AND POSITION COORDINATES

 $\{1.0, 1.0, 0.0\}$



Introduction to the IDE

(Integrated Development Environment)


```
1 void loop() {
2   position1[0] = 2;
3   position1[1] = 2;
4   position1[2] = 0;
5   api.setPositionTarget(position1);
6 }
```



```
1 void loop() {
2    position1[0] = 2;
3    position1[1] = 2;
4    position1[2] = 0;
5    api.setPositionTarget(position1);
6 }
```

$$x = 2$$
 $y = 2$ $z = 0$


```
position1 [ [ 0 ] = 2

position1 [ 1 ] = 2

position1 [ 2 ] = 0

set PositionTarget position1
```


SetPositionTarget

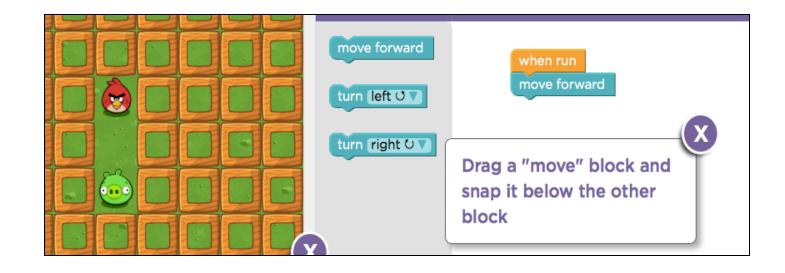
Send your SPHERES to a point within the ISS

SetPositionTarget

Send your SPHERES to a point within the ISS

Arrays

A list of data of the same type



Hour of Code

Zero Robotics


```
position1 [ [ 0 ] = 2

position1 [ 1 ] = 2

position1 [ 2 ] = 0

set PositionTarget position1
```

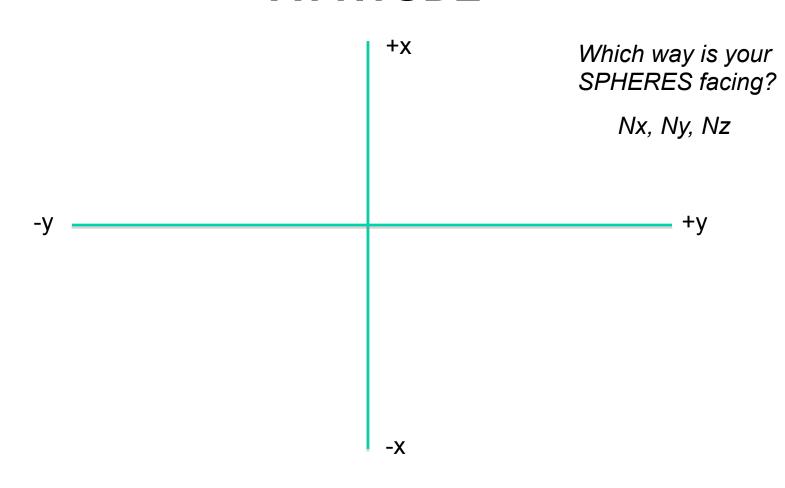
To the IDE!

SetAttitudeTarget

Rotate your SPHERES to face a direction

SetPositionTarget: [x, y, z]

setAttitudeTarget: [Nx, Ny, Nz]



ATTITUDE

ATTITUDE

Which way is your SPHERES facing?

DIRECTION	Nx, Ny, Nz
Positive X	1, 0, 0
Positive Y	0, 1, 0
Negative X	-1, 0, 0
Negative Y	0, -1, 0

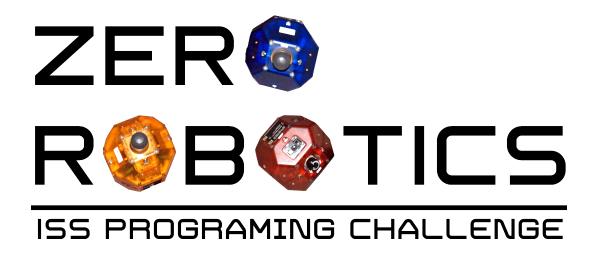
SetPositionTarget: [x, y, z]

setAttitudeTarget: [Nx, Ny, Nz]

To the IDE!

Lunch/Snack Break!

Q and A



CORONASPHERES The 2015 Game

Your Mission

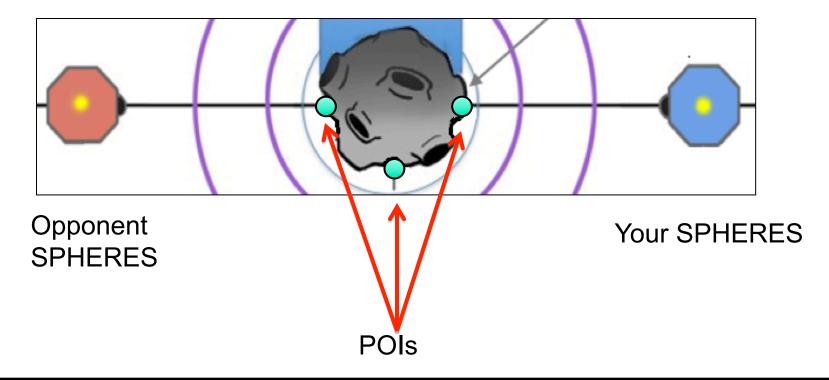
Conducting Optical Research on Nearby Asteroids (Corona)

– Your Mission: Use a robotic satellite to take pictures of "points of

interest" on an asteroid

– Your Goal: Collect and upload as many new pictures as possible

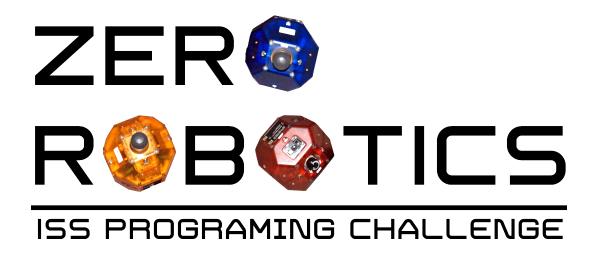
while avoiding effects of solar flares



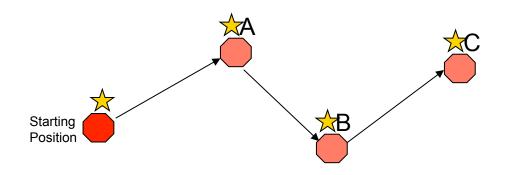
Your Tasks

 Command your robotic SPHERES to take pictures of Points of Interest (POIs) on an asteroid

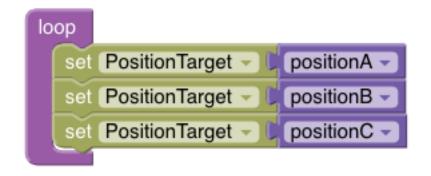
Intro to the Game

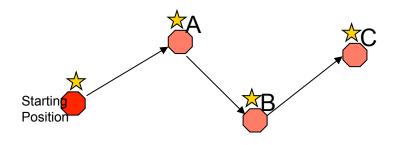


Introduction to the IDE Part 2

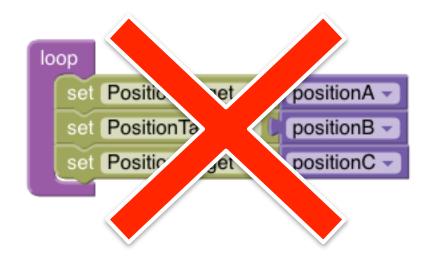


when run
move forward
move forward
move forward





when run move forward move forward move forward



when run
move forward
move forward
move forward

CONDITIONALS

If this, then do that: the basics of logic statements


when run

repeat until

do move forward

if path to the right UV

do turn right UV

Hey, SPHERES!

Go to PositionA.

Then, when 20 seconds have gone by in the game, go to PositionB.

VARIABLES

A container for single pieces of data

VARIABLES

A container for single pieces of data

COUNTER

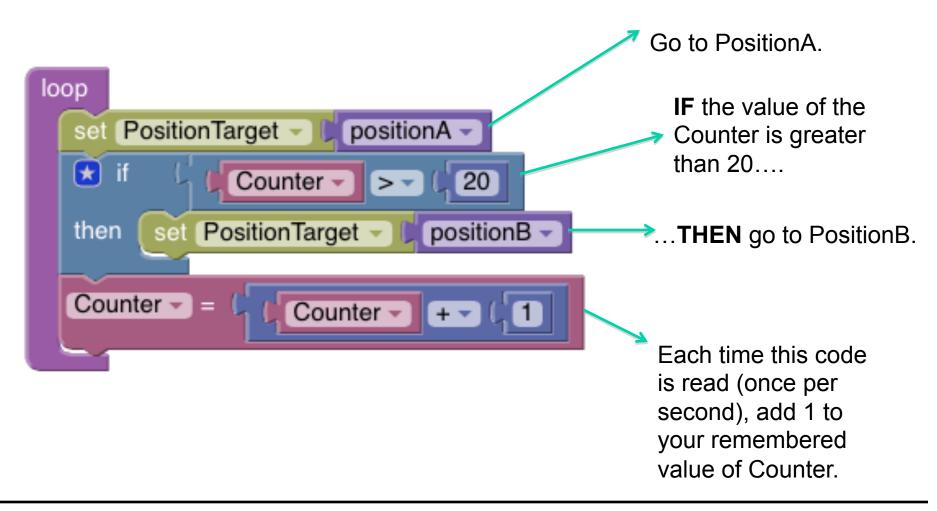
A way to count how much time passed in the game

Hey, SPHERES!

Go to PositionA.

Then, when 20 seconds have gone by in the game, go to PositionB.

To the IDE!



Exploring the Educator Guide

How to Access the Educator Guide

zerorobotics.mit.edu

→ Resources

→ Middle School Curriculum

OR:

http://static.zerorobotics.mit.edu/docs/ms/EducatorGuide.pdf

- Designed to be used electronically hyperlinks will take you to tutorials, videos, etc.
- You can save it to your computer, and hyperlinks will still be usable when you're connected to the internet
- If you're a hard-copy kind of person:
 - Print so you have it but ALSO have the electronic version available!
 - Note: page numbers in the printed document are slightly different than how a PDF reader indicates page #

- Improved technology skills, especially around computer science and programming
- Strengthened instructional practice
- An understanding of the value of integrating technology into teaching

Improved technology skills, especially around computer science and programming

IN CODING: SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH INTERSECT

- Strengthened instructional practice
- An understanding of the value of integrating technology into teaching

Improved technology skills, especially around computer science and programming

IN CODING: SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH INTERSECT

Strengthened instructional practice

THIS WILL MAKE YOU A BETTER TEACHER!!

An understanding of the value of integrating technology into teaching

Improved technology skills, especially around computer science and programming

IN CODING: SCIENCE, TECHNOLOGY, ENGINEERING, AND MATH INTERSECT

Strengthened instructional practice

THIS WILL MAKE YOU A BETTER TEACHER!!

An understanding of the value of integrating technology into teaching

HOW TECHNOLOGY INFLUENCES OUR STUDENTS, & HOW THEY CAN INFLUENCE TECHNOLOGY

Color-Coded Activities

- Exploration
- Instruction
- Active Activity
- Computer Programming Tutorial
- Game
- Assessment & Reflection

Color-Coded Activities

- Exploration
- Instruction
- Active Activity
- Computer Programming Tutorial
- Game
- Assessment & Reflection

Pages 5-6 (9-10 in PDF): Getting Started – What to do first!

Before You Teach

- Make arrangements for field trips or speakers.
 - The following required field trips will be organized in conjunction with your regional State After-School Netw (SAN):
 - Field Day: This field trip occurs at the beginning of V
 2 and includes a tour of a college campus, NASA/spa institution, local planetarium or science museum.
 - ISS Finals Event: Details will be provided separately.
 - For a list of optional field trips that you can choose to organize yourself, see Possible Field Trips and Speake page 135.

Page 6 (10 in PDF): Links to All Tutorials

- Run through each of the other tutorials:
 - Week 1
 - Getting to Know the ZR IDE
 - Introduction to Arrays and the setPositionTarget Function
 - More Simple Arrays and the setAttitudeTarget Function
 - More Simple Arrays—Another Way to Initialize Variables

o Week 2

- The Conditionals: The Basic of "If-Then"
- Conditionals: More Fun with "If-Then" and Logic Operators
- Conditionals with Advanced Logic Operators
- Conditionals Continued: "If-Then-Else"
- Introduction to Game Mode

o Week 3

Pages 9-10 (13-14 in PDF): Schedule of Learning Outcomes

Schedule

	Week 1	Week 2	Week 3	Week 4	Week 5
Science and Mathematics Concepts	Cartesian coordinates Forces Grids and graphing	Cartesian coordinates Dimensions Forces Grids and graphing Motion Newton's Laws Order of operations Vectors	Kinematics Mass vs. Weight Speed vs. Velocity		Dynamics Degrees of Freedom
Science and Mathematics Activities	Bottle Rockets, Part 1 Mystery Coordinate Grid Optional:	 Seeing in 3-D— How to Visualize Space! Vector Hunt Thruster Balloons 	Mapping with Speed Kinematics Scenario		STEM programs a careers Smooth Mc How Many

Exploration Activity

- Break into 3-4 groups
- Each group has a task/challenge re: the Educator Guide
- Complete your challenge & make your poster
- Prepare to present your findings to the group (be creative & colorful!)

Scheduling Your ZR Summer

Break

Mock ZR Schedules

- Pick one person in your group whose program you will create a schedule for
- Working in the constraints of their program hours, numbers of kids, space, etc. – dive into Week 1's many activities
- Select the activities you will do and create a schedule

Reflection Activity

Thank You! Good Work! Now Go Have Fun!

Educator Post Survey

